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We present a method for constructing translation and dilation invariant func
tions spaces using fractal functions defined by a certain class of iterated function
systems. These spaces generalize the CO function spaces constructed in [D.
Hardin, B. Kessler, and P. R. Massopust, J. Approx. Theory 71 (1992), 104-120]
including, for instance, arbitrarily smooth function spaces. These new function
spaces are generated by several scaling functions and their integer-translates. We
give necessary and sufficient conditions for these function spaces to form a
multiresolution analysis of L 2(1FH © 1994 Academic Press, Inc.

1. INTRODUCTION

Dilation and translation invariant function spaces play an important role
in the theory of wavelet expansions. More precisely, let N be an integer
greater than 1 and for f: IR ~ IR define the dilation of f by N to be

DNf = f(- IN),

and the integer-translate of f by

Tf = f(- - 1).
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We are interested in linear function spaces that are invariant under DN

and T. Examples of such function spaces include the following:

(a) The spline space Sd with integer knots, i.e., all functions f E em)
with fl(n.n+l) a polynomial of degree at most d. For r = -1 we let Sd l

denote the piecewise polynomial functions of degree at most d with
integer knots.

(b) The space Va generated by the integer translates of a single
scaling function ¢ satisfying a dilation equation of the form

¢(xjN) = LPt¢(x-f).
tEZ

( 1.3)

Such spaces have been studied in [4, 5, 7, 14, 15, 16, 19, 20, 21, 22] and
many others.

(c) The spaces g- consisting of piecewise fractal interpolation func
tions as considered in [13]. The elements of g- when restricted to (n, n + 1)
satisfy "dilation" equations of the form

f(u;(x - n) + n) = An.;(x - n) + sf(x) (1.4)

for x E (n, n + 1) and i = 0, ... , N - 1, where u;(x) = (x + djN, and
An,;(x) is an affine function of x and lsi < 1.

For each of the spaces s;+ l' r = -1,0,1,2, ... , there exists a single
function ¢ which together with its integer translates generates S;+ I' In
the case r = - 1, ¢ = X[O,IJ' For r ~ 0, ¢ is the cardinal B-spline of
degree r + I (cf. [6] and references therein). Therefore, ¢ satisfies a
dilation equation of the form (I.3) and so S;+ 1 is a special case of the
spaces in (b). In general, however, the spaces Sd for d > r + 1 are
generated by the integer translates of a finite collection of (scaling)
functions. The case Sd 1 was for example, investigated in [1].

The spaces of fractal interpolation functions studied in [13] also
require-due to their construction-more than one scaling function. In
Section 2, we extend the construction of translation- and dilation-invariant
linear spaces by setting up a linear isomorphism between the space of
real-valued functions bounded on compact subsets of IR and a function
space A whose elements are sequences A = {An,;: nEd', i = 0, ... , N - I}
of functions bounded on [0,1]. The lift LiN: A ~ A of DN to this function
space is given by

( 1.5)
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where nEll and i, j = 0, ... , N - 1. Equation 0.5) then leads to the
construction of translation- and dilation-invariant spaces from Ll N - and
shift- (on n) invariant linear spaces of A.'s. For instance, the linear
subspace {A. E 11: An ; is a polynomial of degree ~ d for all nEll and
i = 0, ... , N - l} is clearly Ll N- and shift-invariant. Similarly one may use
spline spaces or even some Vol [0, I] from (b). However, the functions
constructed from such A's are typically wildly discontinuous. In Theorem
2.3, we give necessary and sufficient conditions on A. and s such that the
resulting function on IR is C r smooth. In particular, for N = 2 and each
s E (- -!-, t) we explicitly construct a translation and dilation invariant
space of C I functions using quadratic An,;'s and the conditions from
Theorem 2.3. This space is generated by two compactly supported C l

scaling functions. In the case s = i, the scaling functions are cubic
Hermite interpolatory polynomials and, in the case s = 0, they are piece
wise quadratic polynomials. Otherwise, the scaling functions are not
piecewise polynomial and their derivatives are self-affine fractal functions.
Thus, s is a free parameter that can be used to satisfy additional condi
tions. For instance, in Section 5, we find s so that the scaling functions and
their integer-translates form an orthonormal set. Using these scaling
functions, we construct in [111 compactly supported, continuous and or
thonormal wavelets.

This approach can be generalized to scalar-valued functions on IR n using
either n-simplices or n-cubes instead of intervals (cf. [12, 17]). The n = 2
case has been considered in [9). The general case will be presented in
forthcoming papers [10, 11, 12].

For a finite set {4>I, 4>2, ... , 4>A} of scaling functions, the 4>;'s satisfy a
system of coupled dilation equations which can be written in the form of a
single vector equation of the form (1.3). Here 4> = (cP l, ... , cPA)T and the
p t's are A X A matrices. In [11], we investigate solutions to these matrix
dilation equations. In particular, we consider conditions on the matrix
coefficients guaranteeing regularity of the solutions.

In Section 3, we focus on multiresolution analyses (MRAs) of L 2(1R)
generated by several scaling functions. In this context, 4>1, ... , cPA generate
an MRA of L 2(1R) if the following conditions hold:

Let (Vk}k E Z be a collection of closed subspaces of L 2(iR) satisfying

(a) Nestedness. V k :::l V k + I' k E lL. ( 1.6)

(b) Separation. U V k = {O}. ( 1.7)
kEZ

(c) Density. U V
k

L 2(1R) = L 2(1R). ( 1.8)

(d) fE V k - f(N·) E Vk-l> k E lL. ( 1.9)
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(e) Let 9Jq, = (<p,,(. - t): a = 1, ... , A; t E l'}. Then !1fq, is a

R· b' f V:. v: L'(R) d h .lesz asIS 0 0' I.e., 0 = span /1Jq, an t ere eXist
positive constants R I and R 2 , called Riesz bounds, such that

R) t L:1c/ 1
2

::;;11 t L:c i <P"(.-nI1
2

::;;R 2 t L:lciI
2

, (1.10)
,,~ltE£ ,,~\tE£ 2 ,,~lI'EjI'

for any square summable {e(}.

We give necessary and sufficient conditions for 9J<f> to be a Riesz basis of
Vo' We also give sufficient conditions for the separation and density
properties to hold. We verify that for each s E (- ~, ~) the scaling
functions for the C \ example mentioned above generate an MRA of
L 2([R). We also construct associated wavelets that give an orthogonal direct
sum decomposition of L 2([R).

In Section 4, we give decomposition and reconstruction algorithms for
these MRA's.

2. TRANSLATlON- AND DILATION-INVARIANT SUBSPACES

In this section we construct scaling functions generating multiresolutiO{l
analyses. These functions are constructed using fractal interpolation func
tions which were introduced by Barnsley in [2]. Throughout this section
s E ( -1, 1) and N an integer greater than 1.

2.1. Fractal Functions

We first present an example to illustrate the construction of fractal
interpolation functions. Given real numbers Yo' yp and Y2' and a parame
ter s E (-1,1), we construct a continuous function on [0, 1] interpolating
(0, Yo), (t YI)' and (l, y) as the fixed point of the contractive (in the
sup-norm) operator on bounded functions on [0, 1],

(cfJf)(x) = Ai(uil(x)) + 5f(Ui ' (X)),

for all x E ui([O, IJ), i = 0,1. Here ui(x) = (x + 0/2 and Ai(x) = aix + bi
are chosen so that (cfJJ)(O) = Yo, (cfJf)(~) = YI' and (cfJf)(1) = Y2' when
ever f(O) = Yo, f(~) = Y\, and f(1) = Y2' Explicitly, we have a o =

(5 - OYo + y\ - SY2' a\ = sYo - YI + (l - S)Y2' bo = (I - s)Yo, and hi =
Y\ - SYo· The unique fixed point f* is continuous and passes through
the given interpolation points. The graph of f* is self-affine in the
following sense: Let wi(x, y) = (ui(x), A/x) + sy), i = 0,1, and for any
nonempty compact set E ~ [R2 let Wee) = wo(E) U wl(E). Then it is
easy to verify that graph( cfJJ) = W(graph( f n. So, graph(J) is a fixed point
of W, and thus is a union of two smaller affine images of itself (see also
[2, 3, 13 and 18]).
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More generally, let B(I) denote the Banach space of bounded real
valued functions on 1= [0,1) with the sup-norm, and 91 = ® ~~ IB(I)
its N-fold direct product. Let A = (AD, ... , AN-I) E 91, J;nd let
u[: [0, 1) ~ [0,1) and Vi: [0,1) X IR ~ IR be as follows

1
ui(x) = N(x + i),

vi(x, y) = Ai(X) + sy,

for i = 0, ... , N - 1. Let Ii = uJn = [i/ N, U + 1)/N) for i = 0, ... ,
N - 1. Define $A: B(I) ~ B(I) by

(2.2)

for x E Ii and i = 0,1, ... , N - 1.
Equations (2.2) and (2.1b) imply that $A is a contraction on B(I) with

contractivity Is I and so $A has a unique fixed point fA E B(I). In the
event that each Ai is continuous and $A satisfies the join-up conditions

i = 0, ... , N - 1 (2.3)

(note fA(O) = AN _1(0)/0 - s) and Nl -) = AOO -)/0 - sn, then fA is
continuous and, following [2), is called a fractal interpolation function. In
general, we call fA a fractal function since the graph G of fA is typically a
fractal set in 1R 2• In fact, G is made up of smaller images of itself in the
following sense: Let Wi: [0, 1) x IR ~ [0, 1) x IR be given by

for i = 0, ... , N - I, then 2.2 implies

N-l

G= Uwj(G)
j~O

(2.4)

(2.5)

That is, G is the attractor of the iterated function system {w;l:::o 1. We note
that wJG) satisfies a similar equation, namely

N-l

wi(G) = U (WiOWjOWi-l)(Wi(G)),
j~O

for i = 0, ... , N - 1.
Let Pi: I; X IR ~ I x IR be the "rescaling function" defined by

(2.6)
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Then, applying Pi to (2.6), we obtain

N-I

(Pi 0 W;)( G) = U Wi.i(Pi 0 W;)( G)),
j~O

where w· . = (p. 0 w)o w o(p. 0 W)-l A simple calculation shows that
t.) I I } I I •

Wi•i = (Ui , Vi.) where

Define AU) = (A i.O"'" Ai,N-') E$ and observe that

graph(JA(i)) = (PioWi)(G) = graph(fAoui)' (2.8)

where the second equality follows from fA being the fixed point of (2.2).
Let 8: $ ~ ®}:~I9J be given by

8(.-\) = (A(O), ... ,A(N - 1)). (2.9)

In Section 2.2 we will identify elements in ® z9J with real-valued func
tions on IR. The dilation operator D N as defined in (1.1) will be shown to
correspond to the operator Ll N : ® z9J ~ ® z$ given by

(2.10)

for all n E Z and j E {O, ... , N - 1}. Equation (2.10) can be written as
Eq. 0.5) using (2.7) and (2.9). The following result gives the basic corre
spondence between elements in $ and functions in B(n.

THEOREM 2.1. The mapping A~ fA is a linear isomorphism from 9J to
B(l).

Proof From (2.1) and (2.2) it is clear that afA + fx is a fixed point of
<PaA+X' for all a E IR and A, X E $. By the uniqueness of the fixed point
of <PaA+X' we have afA + fA' = faA+X' and thus linearity. It is easy to see
that fA = 0 iff A = O. To show surjectivity, let

Ai(f) = f 0 U i-sf,

for i = 0, ... , N - 1. Then ACt) E9J whenever f E B(l). Also, fAct> = f.
I

2.2. The Correspondence between DN and Ll N

Let BcCIR) denote the Banach space of real-valued functions bounded on
any compact subset of IR with the sup-norm. An element f = {fn},'+~'"_'" E
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® ;rB(I) is identified with an f E Bem) via the linear isomorphism

f...!+ E fn(' - n)Xln,n+l)'
nE l'

(2.11)

where XA denotes the characteristic function of A s R
Note that 8: 97 ~ B( I) from Theorem 2.1 induces a linear isomorphism

0: ® £97 ~ ® zB(I). The next result shows the correspondence between
DN : Be(~) ~ BC<~) defined in (1.2) and I N : ®z97 ~ ® rg] defined in
(2.10).

THEOREM 2.2. The following diagram commutes:

(2.12)

Proof Let f = Un}n E;r E ® z B( I). Then

(
X - nN) (x)

(DNoT)(f)(x) = Lfn N X[n,n+l) N

N-l (X - iN)
= L L fi -,:;- XUN+J,iN+J+J)(x).

iE1' J~O

Thus

( 2.13)

for x E I. Equations (2.8) and (2.10) then give

I

The other fundamental operator on B/IR) is the translation operator T
as defined in 0.2). It is easy to see that the lift of T is the right-shift
operator u: ® z.g] ~ ® rCJJ given by

(2.14)



380

that is,

GERONIMO, HARDIN, AND MASSOPUST

(2.15)

Let r be a nonnegative integer. Later we will need the following
characterization of (T 0 B)-ICOR) ~~.

Let f E C(IR) and let A = (T 0 B)-I(n. Since the restriction of f to
I = [0,1) is the unique fixed point of $, we have

All

f(u;(x)) = AO.i(x) + sf(x), (2.16)

for x E I and i = 0,1, ... , N - 1. Let er(l) consist of the restrictions of
- - N-l -

functions C(l) to I. Since f E C(l) it follows that Ao E ®j~O C(l) =:

~r.

Differentiating (2.16) m-times, m = 0,1, ... , r, yields

( 2.17)

for all x E I and i = 0,1, ... , N - 1. Using the continuity of j<m) at
Ui_l(I -) = u;CO) = i/N, we obtain

LmA:= (1 - sNm)(A(m)(o) - A(m) (1))
I ~I ~I-I

+ (sN m )(A\7.'Mo) - A\7.'~_I(I)) = 0, (2.1"8)

for m = 0, 1, ... , rand i = 1, ... , N - 1, where L'[': ® r5fJr ---> R Simi
larly, using the continuity of f(m) at 0, we get

(2.19)

for m = 0,1, ... , r, where i m
: ®f~r ---> R

Since Tnf E COR) for all n E Z we obtain

(2.20)

Let ~r be the set of all A E ® J'~r satisfying (2.20) for all n E Z. It
follows from the above that (T 0 B)-lerOR) ~ ~r. The next result gives us
the reverse set containment.

THEOREM 2.3. Suppose that IslN r < 1. Then (T 0 B)-ICOR) = ~r.

Proof We explicitly denote the dependence of fA' $A' and ~r on s by
fA.s' $A.s' and 'if5"r, respectively. The crux of the proof lies in the following
result.
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LEMMA 2.1. Let A E g;' satisfy

(1 - SNm)(A~~),(O) - A~m)(I)) + (sNm)(A(;'l(O) - A(N~,(1)) = 0,

(2.21)

for m = 0,1, and i = 1, ... , N - 1. Suppose IslN < 1. Then fA,s E e'(I)
and

(2.22)

Proof It follows from (2.20 with m = 0,1 and from A E g;l that $A s

is a contraction on e'(I) with contractivity IslN < 1 in the e l topology,
Thus fA,s E C1(I). Comparing (2.17) and (2,16) we see that f~.s is a fixed
point of <PNX , Ns' By the uniqueness of the fixed point the result follows.

I
Now let A. E <tf/ and fA, s = CTs 0 fl)-l A.. Since An' nEll, satisfies the

hypotheses of Lemma 2.1, fA.sl[n,n+ I) E C;([n, n + 1)). Observe that

and

f~jn-) = NXn _I,N_,(I-)/(1 - sN).

Thus (2.19) implies fA s E el(IR) and (2.22) implies

f~,s = fN>i,Ns' (2.23)

Note that N'X E <tf~s whenever A. E <tf/+ 1 and the result follows by
induction on r. I

Remark. This theorem implies that .iN<tfr ~ <tfr.

2.3, An Example

Let 1rn be the set of all polynomials of degree less than or equal to n
whose domain is 1, and let lln=®i®j:~I1rn)' Since AjOUj+

s(A j - A) E 1rn whenever Ai' Aj E 1rn , it follows from (2.10) that
.iNlln ~ IIn' Let II~ = IIn Ii <tfr, i.e., A. E II~ if and only if A. E II~ and
satisfies (2.20). Theorem 3.2 then implies that .iNII~ ~ II~.

EXAMPLE 1. In particular, we consider the case N = 2, n = 2, r = 1,
and Is I < t. We note that the restrictions of these function to a single
interval are integrals of self-affine fractal functions as considered in [3].
We identify 1r2 with 1R 3 via the correspondence a + bx + cx 2 ~ (a, b, d.
Hence A E 1r2 ® 1r 2 can be identified with L' = (a o, bo, Co, a" b" c l ) E 1R 6

640/78/3-7
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where A/X) = a j + bjx + Cj X
2, i = 0,1, and A E [[2 with {Vt =

(a 1,0' bt,o, C1,0' a I, I' bl , l' CI, I)}I E £.

A function g = O(A) is in CI(I) if and only if A satisfies (2.18) for
m = °and 1. These equations are equivalent to

nm . v = 0, m = 0,1, (2.24)

where no = (25 - 1,5- 1,5- 1,1 - 25, -5, -5) and n l = (0,45 - 1,
45 - 2,0,1 - 45, -45). Thus 0(7T2 ® 7T2) n CI(I) is a four-dimensional
linear space and each element g is uniquely determined by g(O), g'(O),
g(l), and g'(l). Using (2.17) and (2.24), we can solve for the corresponding
A in terms of these four values. In particular, let gl' g2' g3' and g4 be the
basis elements

and

Then the corresponding A'S are given by

A(l) = O-I(gl) = (1 - 5,0,5 - t. t - 5,25 - 1, t - 5),

A(2) = (o,t -5,5 - ~,L -L*),
A(3) = (0,0, t - 5, t, 1 - 25,5 - t),
A(4) = (0,0,5 - ~,5 - L -5,i).

Let Vo = Cr 0 9 )(lli). Then f E Vo is uniquely specified by
({fU'), rU' )}e E £. Thus, if ¢JI, ¢J2 E Vo are such that supp ¢J1, supp ¢J2 ~

[ -1,1], <p1(0) = ¢J2,(0) = 1 and ¢J\I(O) = <p 2(0) = 0, then any f E Vo can
be expressed in the form

f(x) = 'Lf(t)¢JI(X-t) +f'(t)¢J2(x-t),
fElL

for each X E IR. Note that we can construct <pI and ¢J2 as follows:
Let AI, A2 E ~ I be defined by

(2.25)

lA(3),
A~= A(l),

0,

i = -1,

i = 0,

otherwise,

(2.26)
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0.1

FIG. 1. Scaling functions from Example 1 with s = k,.

{

A( 4),
A7= A(2),

0,

i = -1,

i = 0,

otherwise.

(2.27)

Figure 1 shows the graphs of cf> I and cf>2 for s = it.
We will continue this example in the next section. There it will be shown

that cf> 1 and cf>2 generate a multiresolution analysis on L 2(IR).

3. SCALING FUNCTION AND WAVELET EXPANSION

3.1. MRAs of L2(1R)

Let {cf>a}:_1 be a finite set of bounded and compactly supported func
tions in U(IR). We are interested in obtaining conditions which imply that
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{<fJ"}:~ I generates an MRA on e(IR). Let

_--;--,---::-;-_-:;-:-__~__~------;;:--:;;;-L2m)

Vo = span{<fJ"(- -t): a E {l, ... ,A}, tE oZ} (3.1)

and

i.e., f E Vk = f(N k . ) E Vo'
We first give sufficient conditions guaranteeing that the density 0.8) and

separation 0.7) properties of the {Vk} hold.

PROPOSITION 3.1. Suppose that {<fJ"}:~ I is a set of bounded and com
pactly supported functions in L Zm).

1. Separation. n k EyVk = {O}.

2. Density. Suppose there exists an a = (a) E IRA such that

La,,<fJ"(x -t) = 1,
".f

(3.2)

for a.e. x in IR.

Then U k E Z Vk is dense in L Zm).

Proof 1. Let In = [n, n + 1], n E oZ, and let U = {fXI : f E Vol. Since
"<fJ"'s are bounded and compactly supported U is a finite-dimensional

linear space over IR, and therefore II . 110" and II . liz are equivalent on U.
Hence there exists a positive constant c such that

for all fEU. By the translation invariance of Vo we have

for any f E Vo. Thus

IIfll" = supllfxlJ ::s; c I: IlfxlJz = cllfllz.
n nEl'

Following [23], note that

Ilfll" s cN-k/zllfzll,

for all f E Vk • Hence if fEn Vk , then Ilfll" = o.
2. Because of the translation and dilation invariance of Uk E zVk it

suffices to show that X[O.l] E Uk E zVkL
2

«(Rl. Without loss of generality,
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suppose thatsupp(cPa) ~ [0, M]. Let j E N be such that Ni > M, and let
SNJ(X) = L~~OLaaAla(X - t). Then SUPP(SNi) ~ [0, Ni + Ml, SNJ(X) = 1
for x E [M, Nil, and !ISN J!I", $ MA max a !IaA1aIL",. It then follows that
IISNJ(Ni.) - X[O 1]112 -+ 0. Since SNlNi.) E U kEZVk' the result follows.

, I

Next we state necessary and sufficient conditions for the set of translates
of the cPa's to be a Riesz basis of Vo.

In what follows it is more convenient to use vector notation. Therefore,
let

q,=

and

Eq,(w):= L. cl>(w + 2rrk)cl>*(w + 2rrk), (3.3)
kEZ

where cl>(w):= f/Re-iwxq,(x)dx denotes the Fourier transform of q, and *
the Hermitian conjugate. Note that Eq, is an A X A matrix. It is also easy
to establish using the Poisson summation formula that

(3.4)

M-l ( )
k~~+l f/R4J(Y -k)4J*(y)dy e

iwk

where the last equality follows from the fact that q, has compact support.

THEOREM 3.2. The collection 97q, = {et>a(. - t): a E 0, ... , A}, t E 2'}
forms a Riesz basis for Vo iff Eq,<w) is nonsingular for 0 $ w $ 2rr.

Proof In vector notation (1.10) becomes

for all {e,} E t 2(IRA). By Parseval's Identity and the shift property of the
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Fourier transform we have

2 1 I 1
2

llr:C~cf»(X -nl dx = -1 Leiw(C~tf.(w) dw
II! ( 21T II! (

1 11' . 1
2

= - C*(w)· cf»(w) dw,
21T II!

(3.6)

where C(w) = L( EZeiwtC~. Since C(w) is 21T-periodic, (3.6) becomes

1 (27T1 •• 12
-2 L. Jo C*(w)cf»(w + 21Tk) dw

1T kEd'. 0

= -2
1

E f 7T
(C*(w)tf.(w + 21Tk)(tf.*(w + 21Tk)C(w))dw

1T kEd'. 0

1 127T • •= - C*( w)Eq.( w)C( w) dw
21T 0

Again by Parseval's identity we have

2 1 127TA' 1 A 2
II{C t lI12 = -2 C*(w)C(w) dw =: -2 IIICII12.

1T 0 1T

Let L2([O, 21T]; C A) := {f: [O,21T] ~ CA: IIIfll1 2 < oo}. Therefore (3.5) is
equivalent to

for all C E L 2([O, 21T]; CA).
From (3.3) it is clear that Eq,Cw) is self-adjoint and positive, and thus has

real nonnegative eigenvalues Aa(w), a = 1, ... , A. The second equality in
(3.4) shows that Eq.Cw) is continuous in wand therefore the eigenvalues
are also continuous. Let a(w) = min a A./w) and hew) = max a AJw).
Then

a(w)C*(w)C(w) ~ C*(w)EcI>(w)C(w) ~ b(w)C*(w)C(w)

and so (3.7) holds with

R 1 = min{a(w): wE [O,27T]} and R 2 = max{b(w): wE [O,21T]}.

In fact, since (3.7) holds for all CE L2([O, 21T]; C A
), these are the best

possible bounds. Since max w b(w) is always finite, we conclude that ~4> is
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a Riesz basis if and only if min w a(w) > 0 which is true if and only if
Eiw) is nonsingular for 0 ,:5; w ,:5; 277". I

A necessary and sufficient condition for VI ~ Vo is that each cf>a be a
linear combination of the translates of cf>a'(N' ), a' = 1, ... , A. More
precisely, VI ~ Vo if and only if cl> satisfies a two-scale dilation equation of
the form

cl>(x) = LPecf>(Nx-t),
tEl.

(3.8)

for some sequence of Ax A matrices {Prl. We remark that the compact
support of cf> implies that Pe = 0 for all but a finite number of t's.

EXAMPLE I-Continued. Using (2.17) we can calculate cf>i and (cf>i)',
i = 1,2, at x = ± t. Equation (2.25) then gives us

(3.9)

A set consisting of B = A(N - 1) functions l/I I, ... , l/I B with the prop
erty that 91", = (l/If3(. - t): {3 = 1, ... , B; t E Zl constitutes a Riesz basis
of the orthogonal complement Wo of Vo in V_I is called a set of wavelets
associated with the scaling functions cf>1, ... , cf>A. The orthogonal comple
ment of Vk in Vk-I is denoted by Wk' It is easy to see that the wavelet
spaces (Wklk E z give an orthogonal direct sum decomposition of L 2([R).

Since Wo c V -I there exists a sequence of B X A matrices (q t It E l'

such that

'!t(xjN) = Lqrcl>(X - t)
e

I f3f3'/2 - hand Lf3" e qt < 00 for {3 - 1, ... , B, were

l/Il

'!t=

(3.10)
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Applying Theorem 3.2 with 4> replaced by til shows that fB", is a Riesz
basis of Wo iff

___L2(~)

(i) Wo c span fB",

(ij) E",(w):= E "'(w + 27rk )"'*(w + 27rk) is nonsingular for
kEIL

wE [0, 27r].

We next derive a relation between E.p and E", using 0.10).

THEOREM 3.3. Let z = e- iw / N and let Q(z) = (l/N)Ltqrzf.

N-] . (w+27rJ )(a) E",(w) =E Q(e- i(21TI/Nlz )E.p N Q(e- i(21Ti/Nlz )*.
J=O

(b) Suppose E.p<w) is nonsingular for all w.
Then E/w) is nonsingular for all w if

N-]

U nulI(Q( e- i(21Ti/Nlz )*) = {O},
j~O

where null denotes null space.

(3.11 )

(3.12)

(3.13)

Remark. In the case N = 2, we have A = B and condition (b) will
hold if det(Q(z» has no N-symmetric zeros on the unit circle. (A complex
number z 0# 0 is called an N-symmetric zero of a function f: C ~ C if and
only if f(e(-i21Ti/Nlz ) = 0, J = 0, ... , N - 1.)

Proof (a) Using 0.10) and 0.12), we have

N-l ((W+27rJ )L Q( e- i(w+211)l/N) L. ~ + 27rk'
j=O k'EIL N

A (W + 27rj ))'<p* N + 27rk' Q(e- i(w+21Tj)/N)*,

where k = Nk' + J. The result now follows.
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(b) Since Q(z)Eq,<w)Q(z)* is a positive matrix for all w, it is clear
from (3.13) that E,p<w) is nonsingular if

N-l

U nUll( Q( e -i(21Ti/Nlz )E",( (w + 27T j) IN) Q( e- I (21Ti /Nlz )*)

j=O

is trivial. By the hypothesis,

nUll( Q( e- i(21Ti /NlZ)E",( w + 27TjIN )Q( e- i(21Ti/N)z)*)

= nUll(Q(e- i(21Ti/Nlz )*)

and the conclusion follows. I

We next show that the C I scaling functions constructed in Section 2.3
generate an MRA on L 2m).

3.2. Example I-Continued

Let 1>1 and 1>2 be again defined by (2.26) and (2.27). Let

Note that Vo = (;0 flXIID () L20m and hence VJ = D2VO ~ Vo' There
fore, the nestedness condition (1.7) holds.

Since A(1) + A(3) = (1 - S, 0, 0,1 - S, 0, 0), it follows from (2.2) that
O(A(O + A(3)) == 1. Thus 1>J forms a partition of unity

I: 1>1(X - f) == 1.
tEll.

As 1>1 and 1>2 are bounded, compactly supported, and satisfy condition
(3.2) with a = (1,0), it follows from Proposition 3.1 that the separation
and density properties of {Vk} hold.

Finally, we show that 1>1,1>2, and their integer-translates form a Riesz
basis of Vo' By Theorem 3.2 it suffices to show that Eq,<w) is nonsingular,
for all w E [0, 27T]. For our example, the number M in (3.4) is equal to 2
since the support for both 1>1 and 1>2 is the interval [ - 1, 1].
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Let ek := fRcP(y - k)cP*(y)dy, k = 0, ± 1. The ek's are calculated us
ing (A. 1) in the Appendix and Mathematica. They are given by

92 - 69s - 78s 2 + 56s 3

60(2 - s)(l - S2)
0

eo =
5 - 4s

0
240(1 - S2)

28 + 9s - 42s 2 + 4s 3 13 + 9s - 27s 2 + 4s 3

120(2 - s)(l - s2) 240(2 - s)(l - S2)
e\ =

-13 - 9s + 27s 2 - 4s 3 -3 - 4s + 8s 2

240(s - 2)(1 - S2) 480( 1 - S2)

ande_1=ef.
Hence Eq,<w) = e_\e- iw + eo + e\e iw

, w E [O,27T], and therefore,

(3.14)

where z = eiw and

'Yo = -1 - 40s - 147s2 + 200s 3
- 16s4

,

'Y 1 = 544 + 640s - 3912s2 + 3520s 3
- 896s 4

,

'Y2 = - 3006 + 8400s - 7722s 2 + 2160s 3
- 96s 4

•

Note that the denominator in (3.14) does not vanish for lsi < 1. The roots
of the quartic equation in the numerator of (3.14) are of the form

where

p± {Fl, (3.15)

assuming 'Yo * O.
It follows from (3.15) that the zeros of det(Eet>(w» are on the unit circle

if and only if p is real and p2 S; 1. However, this is equivalent to
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The polynomial .9f(s) factors into

30720(2 - s)3(2s - l)z(32 - 39s - 18s z + 26s3).

Using methods from elementary calculus, one can easily show that the
above cubic polynomial is strictly positive for lsi < 1. Hence 9£'(s) > 0,
except for s = 1/2.

Therefore, cI> generates an MRA on LZ([R), for any s E (-1,1) \ H}. If
lsi < ~, 4>1 and 4>z are also in CI(IJ~n. Next we construct the wavelets. As
we will see, it is possible to choose wavelets whose support is [ - 1, 2]. This
corresponds to choosing q 1= 0, for t ~ {- 1,0,1,2, 3} in (3.10). Let
'" E V-I be given by

3 I

tfJ(x) = L Lc~4>i(2x-t),
1=-lj=O

for some c~ E IR. A necessary and sufficient condition for '" E Wo ~ V_I
IS

(3.17)

for i = 0, 1 and k = - 1, 0, 1,2 (that we only need to consider
k = -1,0,1,2 in (3.17) follows from the supports of 4>i and "'). Using
(3.8), (3.9), and (3.16), condition (3.17) may be written as

3 I I

1: E L Pt'/~ 4>i'(2x - 2k - t'), 4>i(2x - t »c~ = ° (3.18)
1= -I 1'= -I j,j'=O

for i = 0,1 and k = -1,0,1,2,3, where PI = (pt· i ). Note that (3.18) is a
linear system of eight equations in the ten unknowns d. Using Mathemat
ica, we obtain two solutions c l = (q~,i) and c2 = (q},i) that form a basis of
the nullspace of the linear system (3.18). Let q t = (q,i)i.i=O.I' Then, for
s = It, the q t'S are approximately

_ (-0.297 -1.328)
q-l - ° -0.0064

(
-0.436 -7.898)

q() = 0.1934 0.7801

= (0.990 6.969)
ql 0.513 6.969

= ( - 0.026 4.344)
qz -0.425 6.937

(
-0.230 1.217)

q3 = -0.282 1.464'
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Then defining", = (l/JI, l/JZ)T by (3.10) we have l/JI, l/Jz E WOo The results

obtained in the next section will imply that span Sill/lL
2
(1R) = WOo

Here we show that Sill/l is a Riesz basis for the LZ-closure of its span.
The Q-symbol for'" is given by Q(z) = t(q_1z-l + qo + q1z + qzzz +
q3Z3). Using the exact values for the q/s one can show by elementary,
although tedious, calculations that det(Q(z» has no 2-symmetric zeros on
the unit circle. Figure 2 shows the wavelets l/JI and l/Jz for s = ill.

-1

-1 -0.5

-0.75

FIG. 2. Wavelets from Example 1 with s = f,.

2
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4. DECOMPOSITION AND RECONSTRUCTION ALGORITHMS

Suppose we are given a function fa E VA. Since Va = V\ E9 WI' we can
uniquely decompose fa as

(4.1)

where f\ E VI and g\ E WI' Conversely, given an f\ E V\ and gl E WI'
one can reconstruct fa. Since fa E Va there exists a sequence of vectors
c{O) = (c ,cO)}t E z E I' 2(1')A such that

fo(x) = L cHO)cI>!x - 1').
tEZ

(4.2)

(4.3)

Similarly, there exist vector sequences c(l) = (c t(l)} E I' 2(1')A and d(l) =
{dt(l)} E I' 2(1')B so that

fl(x) = L c;(1)cI>(~ -1'),
tElL

and

( 4.4)

Using 0.8) and (3.10) we obtain the following reconstruction algorithm:

c(O) = L cN1)pt-Nf' + d~,(1)qt-N(" (4.5)
t'ElL

for t E 1'.
Note that this algorithm is finite if cI> and '" are compactly supported.
If fBt}J and fBljJ are orthogonal systems then the decomposition algorithm

is easy to obtain using (3.8) and (3.9). To deal with the case that fBt}J a!1d
fBljJ are not orthogonal syste_ms one has to introduce the dual bases {cPt:
a = 1, ... , A; t E 1'} and {!/If: {3 = 1, ... , B; t E 1'}.

THEOREM 4.1. Suppose that fBljJ is a Riesz basis for Va. Let 4> E L 2([R)A
be defined by

for w E !R. Then cf>a E Va' a = 1, ... , A, and

L cf»(w + 2rrk)~*(w + 2rrk) = I.
kElL

(4.6)

(4.7)
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(4.8)

for all t, k E Z, where <I> t = <1>(. - n.
Proof Since 91", is a Riesz basis the proof of Theorem 3.2 shows that

the eigenvalues A(w) of E"'(w) satisfy

°< R) s A( w) S R 2 < 00,

for constants R] and R 2 independent of w E [0, 21T]. Therefore, the
eigenvalues of E; I(W) are bounded by I/R2 and I/R 1• It follows from the
self-adjointness of E; I(W) that its coefficients are bounded and in
L 2([0, 21TD. Thus, E; l(w) has a Fourier series expansion of the form

E; l( w) = I: e"e-i"w,
nEil

~(x)= Let<l>(X-t),
tEll

(4.9)

(4.10)

which shows that ~ E Vo.
The identity (4.7) follows directly from (4.6) and the fact that E"'(w) is

27T-periodic. By Parseval's Iden1ity and (4.7) we have that

= (1/27T) L {1TeiW<t-k)4>(w + 27Tj)~*(W + 27Tj) dw
jEll 0

= (1/27T)j2'7TeiW(t-k 1 r: cf,(w + 27Tj)~*(W + 27Tj)dw
o jE 1L

for all k, t E Z. I

Let {l/JI, ... , l/JB} be a set of associated wavelets, i.e., .§fJt/J is a Riesz basis
for Wo' the orthogonal complement of Vo in V -I. Then Theorem 4.1
implies the existence of a dual vector .j', = {.j',f:l}/= I whose components are
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in Wo and which satisfies

(4.11)

for all k, t E 7L.
Since Wo .1 Vo, we also have

(4.12)

and

for all k, t E 7L.
Let Q(z) be as in Theorem 3.3 and let

1
P(z) = - L. Pt Zl .

N fEZ

Define

(4.13)

(4.14)

(4.15)

for z = eiw
/

N
, where we abuse notation and write E,p<z) for E,p<w/N).

Since q. is compactly supported both P( z) and Eq,< z) are Laurent polyno
mials in z. As Eq, is nonsingular on the unit circle, it follows that G(z) is
analytic on Iz I = 1, and therefore has a Laurent series of the form

with exponentially decaying matrix coefficients g l'

From (4.6) it easily follows that

or, equivalently,

ci>(x) = L: gfcf>(Nx - t).
lEZ

Similarly, if we define

then there are exponential decaying coefficients h t such that

ti"s( x) = 1: hrci>( Nx - t).
fEZ

( 4.16)

(4.17)

(4.18)
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THEOREM 4.2. Let ~ = {et>a}:~ I generate an MRA on L2m) with associ
ated wavelets til. Let {gt} and {h t } be as in (4.16) and (4.18), respectively.
Then

~(Nx - f) = E g';-Nk~(X - k) + h'i-Nktll(x - k), (4.19)
kEZ

for all f E 7L.

Proof Since et>a(N' - t) E V-I = Vo (£) Wo, for a = 1, ... , A and
f = 0, ... , N - 1, we have ~(Nx - n = L k E zat-Nk<l>(X - k) +
bt_Nktll(x - k), for some matrix coefficients {at} and {btl. Applying

<<~ . » and <<tj" . » to the above equation yields for result. I
Now we are ready to state the decomposition algorithm.
Let fo E Vo = VI (£) WI' and let fl and g I be the unique functions in VI

and WI' respectively, such that

fo = fl + gl'

Let c(O), cO), and dO) be as in (4.2), (4.3), and (4.4). Then, using (4.19),
we obtain

and

ck(l) = L gt-NkCt(O),
tEl

dk(I) = L ht-Nkct(O).
tEl

( 4.20)

(4.21)

EXAMPLE I-Continued. We calculate G(z) using the setup in Exam
ple 1. For the sake of simplicity we choose s = ftJ. Using formula (4.15),
we find that the four entries in the matrix G( z) are rational functions in z
having the same denominator. The zeros of this denominator which is
given by

52,399 - 117,925z 2 + 2,808,594z 4
- 117,925z 6 + 52,399z H

are the same as the zeros of det(Eet>(z2» (all the calculations are done in
Mathematica). These zeros can be calculated exactly, however, due to the
complexity of their expressions, we have opted to give only their approxi
mate numerical values. These are

Zl = 4.45689 = -Z2'

Z3 = 1.45577 = -Z4'

Zs = 0.224372 = -Z6'

Z7 = 0.686922 = - ZH'
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Since the numerators in G( z) have the same degree as the denomina
tors, we may express G( z) as a partial fraction expansion of the form

8 a
G(z) = a o + L _J_,

i= I Z - zi

where

( 4.22)

(
0.908426 - 0.215307 )

ao = 2.05031 -0.458426'

(
2.1651 0.657654)

a2 = 10.9425 3.32381 '

_ (-0.558525 -0.168794)
a 4 - -10.219 3.08842'

(
- 0.000136971 0.0721497)

a 6 = 0.000692257 - 0.364648 '

_ (0.0659662 - 4.62076 )
a 8 - -1.20695 -0.126315'

(
2.9597

a 1 = -14.9584

(
0.0460402

a 3 = 0.842373

_ ( 0.0401392
as - _ 0.202865

_ ( -0.0107273
a7 - 0.196271

0.258477 )
1.30635 '

- 0.00690382 )
-0.126315 '

-0.00118983 )
0.00601343 '

- 0.00338801 )
0.0619885 '

To obtain the {gf}f E Z, we expand (4.22) into a Laurent series converg
ing in an annulus containing the unit circle. This gives

and

8

L ajzj-<f+ 1), t> 0,
i~5

4

- "a.z:-<f+ I ) jJ < 0'-'JJ ,c.
i~1

We remark that gf = &(Zi1fl).

In a similar fashion one can calculate the {h f}f E z,

5. EXAMPLE 2: ORTHONORMAL SCALING FUNCTIONS

In this section we construct scaling functions 4JI and 4J2 such that the
set 91<1> of their integer-translates in an orthonormal system. In [11], we
use these scaling functions to construct two compactly supported and

640/78/3-8
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continuous wavelets r/J I and r/J 2 so that the set !9l/J is also orthonormal.
Such an orthonormal system is useful in applications where a function
IE L 2([P;) is first projected onto ~)' This example also illustrates how free
parameters such as 5 can be used to construct scaling functions and
wavelets satisfying certain conditions.

Let N = 2 and choose 5 in (- 1, 1). Let J;a. b. c; 5) be the unique
continuous fractal function on [0,1] generated by affine A's interpolating
the set {(O,a),(~,b),(I,c)}, where a,b,c E IR. Let eJ>1 and eJ>2 be defined
by

and

eJ>I(X) = {/(O,I.O;S)(X),
0,

(

/(O,a.l;n(X),

eJ>2(X) = l(l,a.o;s)(x),

0,

XE[O,l],

otherwise,

XE[O,I],

xE[1,2],

otherwise.

We determine a and 5 such that 91q, is an orthogonal system. Due to the
symmetry and supports of eJ>1 and eJ>2 it suffices to have

and

</(O,I,O;s),f(O,a,1;s» = 0

(f(o. a, I; s)' l(l, a,O; S» = 0

(5.1 )

(5.2)

Using (A.2), we obtain from (5.0 that a = (35 2 + 5 - 0/(25 + 4).
Condition (5.2) then yields 5 = - 1/5. The graphs of eJ>1 and eJ>2 are
shown in Fig. 3. Using the values of <pI and eJ>2 at n/4, n = 0, ... ,8, one
can solve for the matrix coefficients in the dilation equation (3.8). These
are

Po ~ ( -1~~12

P2 = (9/1~V2

4/2/5 ),

-3/10

-3~1O)'

PI = ( 3/5
9/1OV2

P3 = ( -1/~0V2
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FIG. 3. The orthogonal scaling functions from Example 2.

ApPENDIX

Let A, p. E 91 and let 1 and g, respectively, be the associated fractal
functions, i.e., 1 = f/>ln and g = f/>!J.(g) (cf. (2.2». Define the inner
product of 1 and g over 1 by

<I, g) := jl(x)g(x) dx.
f
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Then using the fixed point property of I and g we have

N-I

<I,g) I: f I(x)g(x)dx
i~O u,(n

1 N-l

= N i~O !(sl(x) + Ai(x»)(sg(x) + ~i(X») dx.

Solving for (I, g) gives

1 N-l

(/,g) = N(1-s2) i~) (Ai'~) +s(<I,~) + (g,AA»))' (A.l)

Similarly, for any nonnegative integer n we have

-N-n--:-+:-1 --N-s ~~Ol (\ Ai' (X + i)n) + <~: (~ )in-i(/, Xi»).

(A.2)

Observe that (A.2) can be used recursively to calculate (I, x n). Thus if Ai
and ~ i are polynomials then (A.l) provides an explicit formula for "( I, g).

Note added in proof After the completion of this paper, the authors learned of work by
T. N. T. Goodman et al. (Wavelets in wandering subspaces, Trans. Amer. Math. Soc., to
appear) and Ch. Micchelli (Using the refinement equation for the construction of pre-wave
lets VI: Shift invariant subspaces, in "Approximation Theory, Spline Functions, and Applica
tions" (S. P. Singh, Ed.), NATO ASI Series C, Vol. 356, pp. 213-222) which overlaps with
some of the results in Section 3.
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